
1

AI in First-Person Shooter
Games

Based in part on material developed by
John McCloskey

Jeffrey Miller
Amish Prasad
& Lars Linden

FPS AI Architecture

• Animation

• Movement

• Combat

• Behavior

Animation Layer

• Controls the player’s body

• Must resolve conflicts between animations
• Dynamic blending

• Actions often need to be specialized
• Parameterize existing animations

• Taking control of specific body parts

• Handling inverse kinematics

2

AI Components: Animation

•• NPC NPC modelsmodels built by artists built by artists
•• Use tools such as Use tools such as ““3D Studio Max3D Studio Max”” or or ““MayaMaya””

•• Models are are constructed from bonesModels are are constructed from bones
•• Bones are connected by articulated joints.Bones are connected by articulated joints.

•• The movement of the joints is constrained by theirThe movement of the joints is constrained by their
interconnectivity.interconnectivity.

•• See See George Bush George Bush ragdoll ragdoll physics demophysics demo..

•• The skeletal system is covered by a mesh of texturedThe skeletal system is covered by a mesh of textured
polygons (polygons (““skeletal animationskeletal animation””.) .) Half-LifeHalf-Life was one ofwas one of
the first games to demonstrate this.the first games to demonstrate this.

AI Components: Animation

•• Example:Example:

AI Components: Animation

•• Animation sequences are generated byAnimation sequences are generated by
defining how joints should articulate throughdefining how joints should articulate through
timetime

•• Walking sequence:Walking sequence:

3

AI Components: Animation

Animation sequences for a model are either:Animation sequences for a model are either:

•• Hand generated by a computer animatorHand generated by a computer animator

•• Recorded from real human (or animal)Recorded from real human (or animal)
movements and applied to a skeletal systemmovements and applied to a skeletal system
((““motion capturemotion capture””))

AI Components: Animation

•• Motion Capture:Motion Capture:

Tom Molet (EGCAS ’96)

4

AI Components: Animation

Animation sequences tend to be:Animation sequences tend to be:

•• Motion primitives: Motion primitives:
•• Run, Walk, Jump, Side-step, ClimbRun, Walk, Jump, Side-step, Climb

•• TransitionsTransitions
•• Start_Walk, Run_To_Jump, Jump_LandStart_Walk, Run_To_Jump, Jump_Land

AI Components: Animation

Some animation sequences only take controlSome animation sequences only take control
of part of the body:of part of the body:
•• wave_hellowave_hello

•• hand_signal_stophand_signal_stop

•• swing_ice_axeswing_ice_axe

AI Components: Animation

•• First step in A.I. is to select whichFirst step in A.I. is to select which
animation sequence or sequences shouldanimation sequence or sequences should
be applied to a modelbe applied to a model

•• Many influences:Many influences:
•• Desired behavior chosen by decision systemDesired behavior chosen by decision system
•• What animation is currently playingWhat animation is currently playing
•• The current velocity and direction of the NPCThe current velocity and direction of the NPC
•• The terrain the NPC is standing onThe terrain the NPC is standing on

5

AI Components: Animation

•• Second step is to parameterize animationsSecond step is to parameterize animations
•• Speed up or slow down animationSpeed up or slow down animation

•• Slow walk, fast walkSlow walk, fast walk

•• Accelerate / decelerate stop and start of runAccelerate / decelerate stop and start of run

•• Slow run as approach sharp turnSlow run as approach sharp turn

•• Blend between animationsBlend between animations
•• walk-to-runwalk-to-run

•• 70% normal walk + 30% limp70% normal walk + 30% limp

•• Layer animationsLayer animations
•• Mix hand_wave on top of walk animationMix hand_wave on top of walk animation

AI Components: Animation

•• Next might add selected Joint ControlNext might add selected Joint Control
•• Take control of particular jointsTake control of particular joints

•• Either:Either:
νν Ignore joint motion in pre-generated animationIgnore joint motion in pre-generated animation
νν Blend with pre-generated joint motionBlend with pre-generated joint motion

•• Used for:Used for:
•• Head TurningHead Turning

νν Looking at a particular object or locationLooking at a particular object or location

•• Arm aimingArm aiming
νν Point gun at a locationPoint gun at a location

AI Components: Animation

•• And finally, add inverse kinematicsAnd finally, add inverse kinematics
•• Algorithmically determine the joint configuration requiredAlgorithmically determine the joint configuration required

for an end-effecter (hand or foot) to reach a particularfor an end-effecter (hand or foot) to reach a particular
locationlocation

• http://freespace.virgin.net/hugo.elias/models/m_ik2.htm

•• Used for:Used for:
•• Keep the feet on the ground on uneven terrain or when walkingKeep the feet on the ground on uneven terrain or when walking

up stairsup stairs

•• Reaching hand out to open a door, pick up and object.Reaching hand out to open a door, pick up and object.

•• Often pre-calculated for speed.Often pre-calculated for speed.

6

Components of an AI System

•• AnimationAnimation
•• Responsible for controlling NPC bodyResponsible for controlling NPC body

•• MovementMovement
•• Responsible for controlling NPC movementResponsible for controlling NPC movement

•• CombatCombat
•• BehaviorBehavior

•• Responsible for controlling NPC decisionResponsible for controlling NPC decision
makingmaking

Movement

• Movement layer figures out how the
character should move in the world

• Avoid obstacles, follow others, …

• Does not figure out where to move (the
destination).

Movement: Pathfinding

• Underlying movement is pathfinding
• A* search is performed at runtime, given an origin and a

destination.
• A* Pathfinding is global - fails with dynamic objects
• Local pathfinding must be continually done.

• High interaction with the game physics system.

• Route depends on:
• NPC’s size

• Will NPC’s body fit in a given location?

• NPC’s navigation ability
• Walk, Jump, Climb, Swim

7

Movement: Pathfinding Tools

• Waypoint
ν Position in a map that is used for navigation
ν Usually explicitly placed in world by a level designer

• Link
ν Connection between two waypoints
ν Often annotated with the required navigation type (Jump, Swim,

Climb)
ν For a given NPC, two waypoints are linked when:

ν The NPC has room enough to move from one node to another
without colliding with the world geometry

ν The NPC has the required navigation ability

• Node Graph
ν Data structure holding all waypoints and links
ν Either generated manually by a level designer or automatically by

the computer and annotated by a level designer

Movement: Node Graph

Combat: Most Challenging

• Assessing the situation intelligently
• Spatial reasoning

• Selecting and executing appropriate tactics
• Camp, Joust, Circle of Death, Ambush, Flee and

Ambush

• Perceptual modeling
• AI must act in accordance with its perceptions

(shouldn’t be able to see in dark without night vision
goggles, etc.)

• Weapons Combat

8

Combat: Spatial Reasoning

• 3D map geometry is difficult to parse.

• Solution: Custom databases
• Place hints throughout the world

• Can be error-prone and inefficient

• Does not handle dynamic obstacles

Perceptual Modeling

• Visual subsystem: seeing target
• Distance to visual stimulus
• Angle of stimulus relative to field of view
• Line of sight calculations

• Auditory subsystem
• Ensure that the AI can hear objects in the world
• AI must interpret and prioritize sounds

• Tactile subsystem
• Handles anything the AI can feel
• Damage notifications and collision notifications

Thief

• Excellent perceptual modelling.

• Auditory & Visual

9

Weapon Combat

• To-Hit Roll
• Calculate value to represent the chance to hit,

generate random number.
• If number is above to-hit value, try to miss target.

• Factors:
• AI skill, Range, Size, Relative Target Velocity,

Visibility and Coverage

• Shoot and Miss
• Pick a target coordinate outside the body
• Place shot inside target’s field of view

Behavior

• Highest-level AI subsystem

• Determines overall behavior, goals, …
• Finite State Machines used to model behavior

states.
• Idle, Patrolling, Combat, Fleeing, Searching, …

• Scripting
• Pre-defined set of behavioral actions
• Triggered Events
• Set AI parameters or send commands to other modules

Quake III Arena

• Released in 1999 by id Software

• Designed to be a multiplayer only game

• The player battles computer-controlled
opponents (“bots”)

• Bots developed by Jan Paul van
Waveren

10

Quake III Bot AI

• FSM based – Uses a stack for short-term goals

• Use Fuzzy Logic for some decision making
• Collecting weapons and armor

• Choosing a weapon for combat

• Fuzzy Relations were generated using Genetic
Algorithms

• Each bot has a data file containing weapon
preferences and behavior-controlling variables

Data File for ‘Bones’

//initial weapon weights

#define W_SHOTGUN 750

#define W_MACHINEGUN 10

#define W_GRENADELAUNCHER 10

#define W_ROCKETLAUNCHER 10

#define W_RAILGUN 15

#define W_BFG10K 10

#define W_LIGHTNING 10

#define W_PLASMAGUN 10

Data File for ‘Bones’
//initial powerup weights

#define W_TELEPORTER 10

#define W_MEDKIT 10

#define W_QUAD 10

#define W_ENVIRO 400

#define W_HASTE 10

#define W_INVISIBILITY 200

#define W_REGEN 10

#define W_FLIGHT 10

11

Bot Characteristics

• Camper

• Jumper

• Rocket Jumper

• Aggression

• Self-Preservation

• Vengefulness

• Alertness

• Various chat variables

Bot Network

Quake III Bot Navigation

• AAS(Area Awareness System)
• Level is subdivided into convex hulls that contain

no obstacles
• Connections between areas are formed

12

Bot Chatting

• Deathmatch
• Not much more than a fun extra

• Team-Play
• Bots can follow orders to defend, attack, escort

• Bots will take ‘Team Leader’ position if player
doesn’t

• Team Leader delegates tasks to bots and players

Bot Input

• Bots should simulate human input
• 90 degree FOV

• fog and the invisibility powerup impact vision

• Bots use sound to detect enemies

Half-Life

• Released by Valve Software in 1998

• Built using the Quake/Quake 2 engines

• AI uses a “schedule driven state machine”

13

Story-Based Game

• Half-Life is a plot-driven game, so the AI must
further the story

• NPC’s aid player throughout game, but are rarely
essential

• Scripted sequences (not cut-scenes) immerse
the player in the story and create sense of
importance

Scripting

• Scenes are built inside levels using triggers
and movement nodes

• Examples
• Security guards or scientists give player

information about his goals

• Battles between aliens and Marines

• Scientist panics and runs into tripmines

Decision Making:Decision Making:

• Module that does behavior selection

• Many of the details and features have been
omitted

• System consists of three types of objects:
• Tasks

• Schedules

• Conditions

14

Decision MakingDecision Making: TASKSTASKS

Simple things for a NPC to do, such as:
• Turn to face a location

(TASK_FACE_FRIEND) (TASK_FACE_OBJECT)

• Find a path to a location
(TASK_FIND_PATH_TO_ENEMY)

(TASK_FIND_PATH_TO_LOCATION)

• Move along a path
(TASK_WALK_PATH) (TASK_RUN_PATH)

• Stop moving
(TASK_STOP_MOVING)

• Play a particular animation
(TASK_PLAY_ANIMATION)

Decision MakingDecision Making: SCHEDULESSCHEDULES

Named lists of tasks:
• SCHEDULE_GET_WEAPON

• TASK_FIND_WEAPON
• TASK_FIND_PATH
• TASK_RUN_PATH
• TASK_PICKUP_WEAPON

• SCHEDULE_FLANK_ATTACK
• TASK_FIND_FLANK_POSITION
• TASK_FIND_PATH
• TASK_RUN_PATH
• TASK_RANGE_ATTACK

Decision Making: Decision Making: CONDITONSCONDITONS

Predicates that are set every time an NPC thinks
For example:

• See an enemy
(CONDITON_SEE_ENEMY)

• Hear danger
(CONDITON_HEAR_DANGER)

• Took heavy damage
(CONDITION_HEAVY_DAMAGE)

• Enemy blocked by something
(CONDITION_ENEMY_OCCLUDED)

15

Decision Making:Decision Making:

• Conditions serve two purposes:

• Schedule Selection

• Schedule Interruption

Decision Making: Decision Making: Conditions

• Used for “rule based” schedule selection

• If (CONDITION_HEAR_DANGER) and not
(CONDITION_HAVE_WEAPON)

 select schedule (SCHEDULE_GET_WEAPON)

• If (CONDITION_HAVE_WEAPON) and
(CONDITION_OUT_OF_AMMO)

 select schedule (SCHEDULE_RELOAD_WEAPON)

Decision Making: Decision Making: Conditions

• Used for schedule interruption.
• Schedules also contain interrupt

conditions.

• SCHEDULE_GET_WEAPON
ν TASK_FIND_WEAPON

 :

ν TASK_PICKUP_WEAPON

ν CONDITION_HEAVY_DAMAGE
ν CONDITION_ENEMY_DEAD

16

Decision Making:Decision Making: Think Cycle

• Update predicate values (conditions)

• If any conditions interrupt the current schedule,
select a new schedule

• Perform next task in schedule list

• If all tasks have been completed, select a new
schedule

Components of an AI System

• Decision Makingecision Making

• Tactical Analysis

• Artificial Stupidity

Tactical Analysis

• Level designers place waypoints in the
environment for navigation

• Node graph contains information of
connectivity between nodes for a map

• Waypoints can also be evaluated for their
visibility

• Information can be used to make tactical
decisions

17

Waypoint Analysis

A World With 6 Nodes and 2 Enemies

Waypoint Analysis

• Limited CPU time

• Decisions must be made quickly (as few
CPU cycles as possible)

• Data must stored efficiently

• Store visibility data in a “bit-string” class

 = visibility from node “a”a
V

Waypoint Analysis

Visibility Matrix

18

Waypoint Analysis

• Danger Nodes
• Determined by “OR”ing the visibility of all

enemy’s (k) nearest nodes

• Safe Nodes
• Is its inverse

U
kj

j
jVV

=

=

=
0

V

=

=

=

Waypoint Analysis

Safe and Dangerous Nodes

Waypoint Analysis

Safe and Dangerous Nodes

19

Finding a Safe Attack Position

• While attacking a selected enemy, an NPC
shouldn’t expose itself to it other enemies

• A good attack position will:
• Provide line-of-site (LOS) to the selected

enemy

• Provide cover from all other enemies

Finding a Safe Attack Position

• To find such locations, first find all nodes
which have LOS to the selected enemy

• Call selected enemy “a”

a
V

Finding a Safe Attack Position

Nodes are visible to selectedselected enemy

20

Finding a Safe Attack Position

• Next determine the set of nodes that are
visible to all other enemies

aj,VV

kj

0j
ja !=

=

=

U
=

=

= ≠

Finding a Safe Attack Position

Nodes are visible to otherother enemies

Finding a Safe Attack Position

• The set of good attack positions is the set
of nodes with LOS to the enemy
intersected with the inverse of the set of
nodes with LOS to all other enemies

I aaa
VVV =' =

21

Finding a Safe Attack Position

Safe nodes to shoot from

Static Waypoint Evaluation

• Unless cheating is employed, NPCs don’t
have full knowledge of the world.

• May not know where all their enemies are
located

• Find a good location to wait in for attack

• Not all positions are created equal

Static Waypoint Evaluation

• To find a good set up position:
• Establish the exposure of all waypoints in a map

• Process can be done off line, before game is
even started

22

Static Waypoint Evaluation

Evaluate Each Node For Visibility

Static Waypoint Evaluation

• A good location is one which:
• Has high exposure (visibility)

• Easy to locate enemies

• Easy to establish LOS to attack and enemy

• Has areas of low exposure nearby
• Can hide easily

• Can run for cover easily

Static Waypoint Evaluation

Good “Sniping” Positions

23

Pinch Points

• Observation of human players reveals that
experienced players anticipate the actions
of their opponents
• For example, if an enemy enters a room with

only a single exit an experienced player will
wait just outside the exit setting up an ambush

• Such “pinch points” can be pre-calculated
by analyzing the node graph

Pinch Points

To find pinch points:

 For each node, N in the node graph with only two neighbors:
• Temporarily eliminate node, N, from the graph, call its neighbors as A & B.
• If both A & B are connected to large regions, N is not a pinch point, try

another N.
• Attempt to find a path between A& B.
• If path exists, N is not a pinch point, try another N.
• Call the node connected to the larger region, O (for outside).
• Call the node connected to the smaller region, I (for inside).

Let’s do that again step-by-step:

Pinch Points

• For each node, N in the node graph with only two
neighbors:

24

Pinch Points

• Temporarily eliminate node, N, from the graph, call its neighbors
as A & B.

Pinch Points

• If both A & B are connected to large regions, N is not a pinch point,
try another N.

Pinch Points

• Attempt to find a path between A& B, if exists try
another N.

25

Pinch Points

• Call the node connected to the larger region, O (for
outside).

• Call the node connected to the smaller region, I (for
inside).

Pinch Points

Once a pinch point has been located a good
ambush location is one which:

• Has a line of site to the waypoint outside the
pinch location “O”

• Can’t be seen from the pinch location “N”

Pinch Points

• Nodes that have a line of site to pinch location
“O”

• Can’t be seen from the pinch location “N”

• Good ambush locations is their intersection:

O
V

N
V

I NOP
VVV ==

26

Pinch Points

Pinch Point

I = Inside Node

N = Pinch Point

0 = Outside Node

Pinch Points

Another Example:

Pinch Points

Result:

27

Pinch Points

Slightly altered version to find pinch points at the
end of hallways:

 For each node, N in the node graph with only two neighbors:
• Temporarily eliminate node, N, from the graph, call its neighbors as A & B.
• If both A & B are connected to large regions, N is not a pinch point, try

another N.
• If O’s neighbor has only one other neighbor in addition to N.

• Move N to O.
• Move O to the other neighbor of the old O
• Repeat until O has only one neighbor.

• Attempt to find a path between A& B.
• If path exists, N is not a pinch point, try another N.
• Call the node connected to the larger region, O (for outside).
• Call the node connected to the smaller region, I (for inside).

Pinch Points

• If O’s neighbor only has one other neighbor in addition to N

Pinch Points

• Move N to O, Move O to other neighbor of old O
• Repeat till O has only one neighbor

28

Pinch Points

• Move N to O, Move O to other neighbor of old O
• Repeat till O has only one neighbor

Pinch Points

• Calculate good ambush locations:

I NOP
VVV ==

Pinch Points

Hall Pinch

I = Inside Node

N = Pinch Point

0 = Outside Node

29

Pinch Points

Final Example:

Pinch Points

• For each node, N in the node graph with only two
neighbors

Pinch Points

• Attempt to find a path between A& B.
• If path exists, N is not a pinch point, try another N

30

Pinch Points

If NPCs organize into squads regions with multiple
pinch points can be employed:

 For each node, N1 in the node graph with only two neighbors:
• Temporarily eliminate node, N1, from the graph, call its neighbors as A & B.
• If A & B are connected to large regions, N1 is not a pinch point, try another N1
• Attempt to find a path between A& B.
• While generating the path if a node with only two neighbors is found,

• Temporarily eliminate it and call it N2.
• Attempt to find a path between A& B.
• If path exists, not a pinch point, try another N1

• Call the nodes connected to the smaller regions, I1 and I2 (for inside).
• Call the nodes connected to the larger regions, O1 and O2 (for outside).

Pinch Points

• While generating the path if a node with only two neighbors
is found

• Temporarily eliminate it and call it N2

Pinch Points

• Attempt to find a path between A & B
• If path exists N1 is not a pinch point, try another N1

31

Pinch Points

• Call the nodes connected to the smaller regions, I1 and I2 (for inside).
• Call the nodes connected to the larger regions, O1 and O2 (for outside).

Pinch Points

• Calculate good ambush locations:

II
2111
NNOP
VVVV =

II
2122
NNOP
VVVV =

Pinch Points

Double Pinch

I = Inside Node

N = Pinch Point

0 = Outside Node

32

Tactical Analysis: Review

• Using the node graph to evaluate map
locations:
• Finding safe and dangerous locations

• Fining places from which to attack

• Finding location to set up sniper positions

• Finding pinch points

Components of an AI System

• Decision Making

• Tactical Analysis

•• Artificial StupidityArtificial Stupidity

ARTIFICIAL STUPIDITYARTIFICIAL STUPIDITY

When NPCs Should Make
Mistakes

33

Intelligence != Fun

• What makes a game entertaining and fun
does not necessarily correspond to making
characters smarter

• The player is, after all, supposed to win

• 11 Ways to be stupid

1. Don’t Cheat

• Sounds easy, but many games “cheat” by
making NPCs omniscient
• Know where enemies are even without seeing

them

• Know where to find weapons or ammo

• Players usually eventually detect cheating or
at least get the feeling that the NPC’s
behavior seems somehow “unnatural”

2. Always miss the player the
first time

• It’s not fun to suddenly and unexpectedly
take damage

• Player may feel cheated, particularly if
attacked with a weapon that kills the player
or does a lot of damage

• By missing the player the first time, it gives
the player a second to react and still keeps
the tension high

34

3. Have horrible aim (wide cone)

• Having abundant gun fire in the air keeps
the player on the move and the tension high

• However, the player is supposed to win
• By giving NPC bad aim, one can have

abundant gun fire without being too hard on
the player

• “Half-Life” used a wide spread on NPC
weapons (as much at 40 degrees)

4. Never shoot when first see
the player

• When a player first walks into an area and is
spotted by an enemy, the enemy should
never attack right away

• A secondary activity, such as running for
cover or finding a good shooting location is
more desirable

• Gives player time to react

5. Warn the Player

• Before attacking the player, warn the
player that you are about to do so
• Make a sound (beep/click)

• Play a quick animation

• Say “Gotcha!”, “Take this”

• This is particularly important when
attacking from behind

35

6. Attack “kung-fu” style

• Player is usually playing the role of
“Rambo” (i.e. one man taking on an army)

• Although many NPCs may be in a position
to attack the player, only a couple should
do so at a time

• The remaining NPCs should look busy,
reloading, changing positions, etc.

7. Tell the player what you are
doing

• Interpreting the actions of NPCs can often
be subtle

• Complex behaviors are often missed by the
player. (Lot’s of work for nothing)

• NPCs should tell the player what they are
going
• “flanking!” “cover me!” “retreat!”

• Players with often intuit intelligence
behavior that isn’t really there

8. Intentionally be vulnerable

• Players learn to capitalize on opponent’s weaknesses.
• Rather than allowing the player to discover unintentional

weaknesses in the AI, vulnerability should be designed into
an NPC’s behavior.
• Stop moving before attacking
• Pause and prepare weapon before attacking
• Act surprised and slow to react when attacked from behind

• Planned vulnerability makes the characters seem more
realistic

• Unintentional mistakes break the realism (seems like
fighting a computer program)

36

9. Don’t be perfect

• Human players make mistakes

• When NPCs behave perfectly they seem
unnatural

• If an NPC knows how to avoid trip mines, run
into then occasionally

• When reloading, sometimes fumble with the
gun

10. Pull back last minute

Trick:
• Push the player to the limit
• Attack vigorously until the player is near

death
• Then pull back. Enemy becomes easier to

kill
• Makes player feel like they really

accomplished something

11. React To Mistakes

• Mistakes in AI are inevitable

• Unhandled, they make make the AI look
dumb

• By recognizing mistakes and reacting to
them intelligently they can be turned into
features

37

11. React To Mistakes

• Example 1:
• Occasionally when an NPC throws a grenade, it

bounces of another object and lands back at the NPCs
feet

• (Note that the player occasionally makes this mistake too!)

• Looks dumb as the NPC blows himself up

• If the NPC reacts, however, the mistake turns into a
feature:

• NPC body and facial expression can show surprise, fear
• NPC can say “Oh Shoot!” or “Doh!”

11. React To Mistakes

• Example 2:
• Player throws a grenade at a group of NPCs. As they

are crowded together not all of them are able to find a
path to get away

• Looks dumb if the NPCs that can’t get away, shuffle
around trying to get out

• If we detect that the problem has arisen, can have the
trapped NPC’s react

• Crouch down and put hands over head

Thief

• Developer - Looking Glass

• Publisher - Eidos interactive

• Revolutionary “Dark Engine"

• Based on stealth

• Released November 11th, 1998

• First person, though newest sequel allow 3PS.

38

“Dark Engine”

• Lightly scripted game
• Specifically single-player
• Multi-state sense system
• Decision state machines
• Centers around the

system's output

• Published - Ubi Soft Entertainment
• Greg Stelmack, lead engineer
• Development - Red Storm Entertainment
• Realistic combat battlefield game
• Released November 13th, 2001

Ghost Recon AI Technique

• A lot of scripting for individual missions

• Enemy and team units use FSM’s

• Modifiable hierarchical commands

• Local navigation and pathfinding (causes
some hang-ups small environmental
details)

39

Ghost Recon Unit Control

• Control five other
teammates

• Tactical overlay map

• Set team
engagement strategy

• Units respond to
other unit actions

Ghost Recon Gameplay
Focus

• Realistic military features
• Stealth and avoidance add new aspect to AI
• Both enemies and friendlies must have

heightened senses of awareness
• “Gameplay rules all.” - Greg Stelmack

Unreal

• Epic Games – Unreal Engine
• Steve Polge, lead programmer at epic
• Digital Extremes – Gameplay depth and design
• Very fast multiplayer FPS
• Large emphasis on team play

40

Unreal Scripting

• UnrealScript much like
Java/C++

• Scripting used to control
specific Bot actions

• Every respawned Bot
checks script flag

Unreal Pathfinding

• Based upon the common
pathnode-using technique for
navigation

• Uses a pre-computed data
structure for guiding movement

• Complex algorithm-controlled
assemblage of linked lists,
Navigation Points, and Binary
Space Partitioning (BSP)
collision data

Unreal Bot Combat

• AI uses states heavily

• Several triggers that determine Bot’s actions

• “Type” of Bot determines fighting style

• Accuracy and speed factor into Bot’s
difficulty level

• Fun factor heavily influences Bot strategy

41

Unreal Team Play

• Incorporates several team
oriented games:

• -Team Deathmatch

• - Capture the flag

• - Bombing run

• - Double domination

• Hierarchical AI system

• Player controlled
team

• Bots have numerous
types of flocking
patterns

• Team bots are
mediocre, while
enemy bots are
excellent

VBS

• Fully interactive,
three-dimensional
training system

• Photo-realistic
terrain

• Bohemia interactive
studios

• Flashpoint engine
includes proprietary
AI algorithms

Promising Future FPS

• Halo 2

• Deus Ex 2

• Doom 3

42

Conclusion

• Four main parts to FPS AI: Movement,
Behavior, Animation, and Combat

• FSM’s dominate genre
• Specifics of AI depends on type of FPS
• Games are entertainment and must be fun

References

• http://www.pcgamer.com/eyewitness/eyewitness_2002-09-
18.html

• http://udn.epicgames.com/
• http://www.unrealtournament2003.com/
• http://www.eidosinteractive.com/gss/legacy/thief/
• http://ai.eecs.umich.edu/people/laird/gamesresearch.html/
• ftp://ftp.kbs.twi.tudelft.nl/pub/docs/MSc/all/Waveren_Jean-

Paul_van/thesis.pdf
• http://www.gamasutra.com/features/19991210/birdwell_pfv.ht

m

